611 research outputs found

    Voces Paginarum : Adalékok a hangos olvasás és írás kérdéséhez

    Get PDF

    Hereditary properties of combinatorial structures: posets and oriented graphs

    Full text link
    A hereditary property of combinatorial structures is a collection of structures (e.g. graphs, posets) which is closed under isomorphism, closed under taking induced substructures (e.g. induced subgraphs), and contains arbitrarily large structures. Given a property P, we write P_n for the collection of distinct (i.e., non-isomorphic) structures in a property P with n vertices, and call the function n -> |P_n| the speed (or unlabelled speed) of P. Also, we write P^n for the collection of distinct labelled structures in P with vertices labelled 1,...,n, and call the function n -> |P^n| the labelled speed of P. The possible labelled speeds of a hereditary property of graphs have been extensively studied, and the aim of this paper is to investigate the possible speeds of other combinatorial structures, namely posets and oriented graphs. More precisely, we show that (for sufficiently large n), the labelled speed of a hereditary property of posets is either 1, or exactly a polynomial, or at least 2^n - 1. We also show that there is an initial jump in the possible unlabelled speeds of hereditary properties of posets, tournaments and directed graphs, from bounded to linear speed, and give a sharp lower bound on the possible linear speeds in each case.Comment: 26 pgs, no figure

    The number of subsets of integers with no kk-term arithmetic progression

    Get PDF
    Addressing a question of Cameron and Erd\Ho s, we show that, for infinitely many values of nn, the number of subsets of {1,2,,n}\{1,2,\ldots, n\} that do not contain a kk-term arithmetic progression is at most 2O(rk(n))2^{O(r_k(n))}, where rk(n)r_k(n) is the maximum cardinality of a subset of {1,2,,n}\{1,2,\ldots, n\} without a kk-term arithmetic progression. This bound is optimal up to a constant factor in the exponent. For all values of nn, we prove a weaker bound, which is nevertheless sufficient to transfer the current best upper bound on rk(n)r_k(n) to the sparse random setting. To achieve these bounds, we establish a new supersaturation result, which roughly states that sets of size Θ(rk(n))\Theta(r_k(n)) contain superlinearly many kk-term arithmetic progressions. For integers rr and kk, Erd\Ho s asked whether there is a set of integers SS with no (k+1)(k+1)-term arithmetic progression, but such that any rr-coloring of SS yields a monochromatic kk-term arithmetic progression. Ne\v{s}et\v{r}il and R\"odl, and independently Spencer, answered this question affirmatively. We show the following density version: for every k3k\ge 3 and δ>0\delta>0, there exists a reasonably dense subset of primes SS with no (k+1)(k+1)-term arithmetic progression, yet every USU\subseteq S of size UδS|U|\ge\delta|S| contains a kk-term arithmetic progression. Our proof uses the hypergraph container method, which has proven to be a very powerful tool in extremal combinatorics. The idea behind the container method is to have a small certificate set to describe a large independent set. We give two further applications in the appendix using this idea.Comment: To appear in International Mathematics Research Notices. This is a longer version than the journal version, containing two additional minor applications of the container metho
    corecore